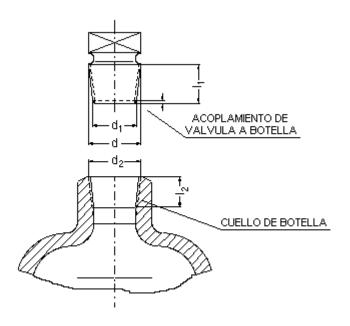
NORMA 3

Acoplamiento de válvulas en botellas y botellones destinados a contener gases industriales, medicinales y sus mezclas.

1. OBJETO

Esta norma tiene por objeto definir los materiales y los acoplamientos de las válvulas de las botellas y botellones destinados a contener gases industriales, medicinales y sus mezclas.


2. CAMPO DE APLICACIÓN

Esta norma se aplicará a todas las válvulas de botellas y botellones destinadas a contener gases industriales, medicinales y sus mezclas, excepto las botellas de uso medicinal que vayan equipadas con válvulas con estribo de seguridad (pin-index), UNE 23.200.

3. MATERIALES

Todos los componentes utilizados en la construcción de las válvulas deben ser compatibles con los gases contenidos en las botellas.

4. ACOPLAMIENTO PARA VÁLVULA A BOTELLA Y BOTELLÓN

Podrán emplearse otros tipos de acoplamientos previa autorización del Centro Directivo del Ministerio de Industria y Energía, competente en materia de seguridad industrial.

-	Rosca de la válvula			Rosca de la botella o botellón				
Denomina- ción usual	Ø nominal d (m/m) +0,12-0	Ø nominal d₁ (m/m) +0,12-0	Longitud I ₁ (m/m)	Ø nominal d ₂ (m/m) +0,12-0	Longitud I ₂ (m/m)	Conicidad	Hilos en pulgadas o paso en (m/m)	Perfil
DIN 477	19,8	17,4	21	19,2	17	6° 52'	14 h/"	W
DIN 477	28,8	25,8	26	27,8	22	6° 52'	14 h/"	W
DIN 477	31,3	28,3	26	30,3	22	6° 52'	14 h/"	W
DIN 2999	39,05	37,17	30	37,5	34	3° 35'	11 h/"	W
	37,1	34,35	26	36,1	22	6° 18'	2,0	Sí
	36,6	34	30	35,6	34	5°	2,0	Sí

5. ACOPLAMIENTOS DE SALIDA PARA GASES INDUSTRIALES

«Para determinados casos especiales podrán emplearse otros tipos de acoplamientos, previa autorización del Centro Directivo del Ministerio de Industria y Energía, competente en materia de Seguridad Industrial, siempre que no puedan producirse confusiones con los normalizados para otros usos.»

5.1. Acoplamiento tipo A:

Acoplamiento de estribo reservado exclusivamente al acetileno.

5.2. Acoplamiento tipo B.

Racor macho Ø 30 paso 1,75 métrico, a derechas.

«Reservado solamente al aire comprimido, con exclusión de toda mezcla, salvo el aire sintético.»

5.3. Acoplamiento tipo C.

- -Racor macho Ø 21,7, paso 1,814 métrico, a derechas.
- -Racor macho Ø 21,7, 14 hilos por pulgada Whitworth, a derechas.
- -Racor macho Ø 21,8 14 hilos por pulgada Whitworth, a derechas.

«Reservado para gases y mezclas de gases no inflamables, particularmente para los gases considerados como inertes (nitrógeno, gases raros del aire, anhídrido carbónico, etc.), incluidos los criogénicos, excepto el oxígeno e hidrógeno líquido.»

5.4. Acoplamiento tipo E.

Racor macho Ø 21,7 paso 1,814 métrico, a izquierdas.

Racor macho Ø 21,7 14 hilos, en pulgadas Whitworth, a izquierdas.

Reservado a todos los gases y mezclas inflamables, tales como el hidrógeno, butano y propano industrial y mezclas conteniendo metilacetileno estabilizado, incluido el hidrógeno líquido.

5.5. Acoplamiento tipo F.

Racor hembra, Ø 22,91, 14 hilos, en pulgada Whitworth, a derechas (R5/8").

Reservado exclusivamente para el oxígeno y el oxígeno líquido. No puede ser utilizado para ninguna clase de mezclas, aunque se trata de p.p.m (nos referimos a la introducción voluntaria de otros gases y no a las impurezas que puedan existir en el propio oxígeno).

5.6. Acoplamiento tipo G.

Racor hembra, Ø, paso 1,5 métrico, a derechas.

«Reservado a todos los gases y mezclas de gases que sean, por lo menos, igual de comburentes que el aire, excepto el protóxido de nitrógeno.»

5.7. Acoplamiento tipo H.

Racor hembra. 0 22,91, 14 hilos en pulgada Whitworth, izquierdas (R5/8"). Ø 26,44, 14 hilos en pulgada Whitworth, derechas (R 3/4").

Reservado al acetileno disuelto y a mezclas estabilizadas de metilacetileno.

5.8. Acoplamiento tipo J.

Racor macho Ø 25,4, 8 hilos en pulgada Whitworth, a derechas (1" BSW).

«Reservado a los gases corrosivos y tóxicos (tales como el bromuro de hidrógeno y el cloruro de carbonilo).»

5.9. Acoplamiento tipo K.

Racor macho Ø 26,1, 14 hilos en pulgadas Whitworth, izquierdas.

Reservado al flúor y trifluoruro de cloro.

5.10. Acoplamiento tipo M.

Racor macho 0 19, paso 1,5 métrico, a izquierdas. Reservado a mezclas técnicas o de calibración.

5.11. Acoplamiento tipo S.

Racor macho 0 22,91, 14 hilos en pulgada Whitworth, derechas (R 5/8").

Reservado al anhídrido sulfuroso.

«5.12. Acoplamiento tipo T.

Racor macho Ø 31,75, siete hilos por pulgada Whitworth, a derechas (1 1/4").

Reservado para botellones de cloro.»

«5.13. Acoplamiento tipo U.

Racor macho Ø 16,66, 19 hilos por pulgada Whitworth, a derechas (R 3/8").

Reservado al protóxido de nitrógeno.»

«5.14. Acoplamientos tipo V_1 y V_2 .

V₁ acoplamiento de estribo de 018 milímetros.

V₂ racor hembra Ø 22,91, 14 hilos en pulgada Whitworth, a derechas (R 5/8").

Reservado para el aire comprimido en aparatos de respiración en inmersión o protección industrial.»

«5.15. Acoplamientos tipo X_1 y X_2 .

 X_1 racor macho Ø 31,75, 7 hilos por pulgada Whitworth, a derechas.

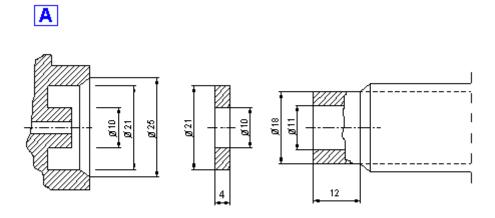
X₂ racor macho Ø 33,25, 11 hilos por pulgada Whitworth, a derechas.

Reservado para los gases cloroflúor (bromo) carbonados inertes en botellones.»

6. ACOPLAMIENTOS DE SALIDA PARA MEZCLAS INDUSTRIALES DE GASES

6.1. Tipos de mezclas.

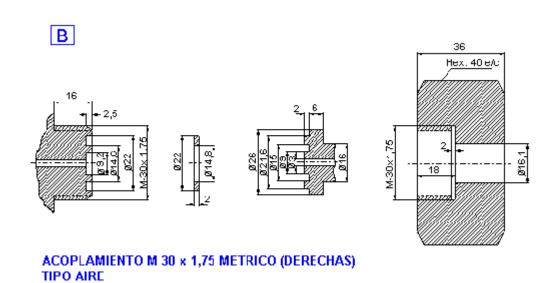
- 6.1.1. Mezclas neutras. A este tipo corresponden todas las mezclas formadas únicamente por gases inertes o pasivos.
- 6.1.2. Mezclas conteniendo gases inflamables. Corresponden a este tipo cualquier mezcla que contenga un gas inflamable, en cualquier proporción, y no sea mezcla técnica o de calibración.


- «6.1.3. Mezclas conteniendo gases comburentes. Corresponden a este tipo todas las mezclas que contengan más del 23 por 100 de oxígeno u otro gas comburente en cualquier proporción y no sea mezcla técnica o de calibración.»
- 6. 1.4. Mezclas conteniendo gases corrosivos. Corresponden a este tipo cualquier mezcla que contenga un gas corrosivo en cualquier proporción y no sea mezcla técnica o de calibración.
- 6.1.5. Mezclas técnicas o de calibración. Pertenecen a este tipo todas las mezclas definidas en la norma 6, independientemente de las características de los gases que las componen.
- 6.1.6. Mezclas tóxicas. Corresponden a este tipo todas las mezclas que contengan un gas tóxico en cualquier proporción y no sea mezcla técnica o de calibración.

6.2. Acoplamientos.

- 6.2.1. Para mezclas neutras. Se empleará el acoplamiento tipo C.
- 6.2.2. Para mezclas conteniendo gases inflamables. Se empleará el acoplamiento tipo E.
- 6.2.3. Para mezclas conteniendo gases comburentes. Se empleará el acoplamiento tipo G.
- 6.2.4. Para mezclas conteniendo gases corrosivos. Se empleará el acoplamiento tipo J.
- 6.2.5. Para mezclas técnicas o de calibración. Se empleará el acoplamiento tipo M.
- «6.2.6. Para mezclas conteniendo gases tóxicos. Se empleará el acoplamiento tipo J.»

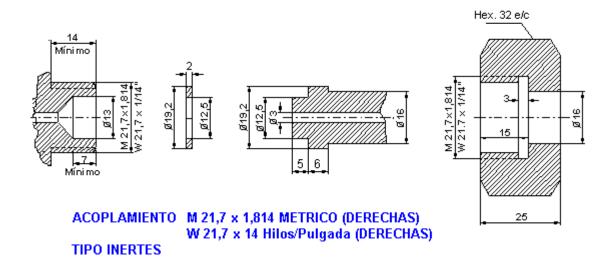
ANEXO I


«Las dimensiones indicadas en los dibujos son orientativas, a excepción de las que definen la rosca del acoplamiento, que son obligatorias.»

ACOPLAMIENTO DE ESTRIBO TIPO ACETILENO

Gases:

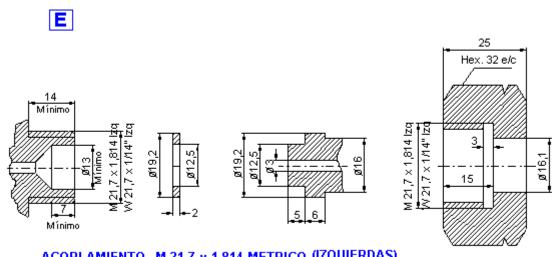
Acetileno C₂H₂



Gases:

Aire natural

Aires sintético



- **A)** Amoníaco, NH₃. Argón. A. Difluordiclorometano, CF₂Cl₂ Diflormonoclorometano, CHF₂Cl. Dióxido de carbono, CO₂.
- K) Kriptón, K.
- **N)** Nitrógeno, N2 Neón, Ne.
- **T)** Tetrafluormetano, CF₄.
 Tetrafluordidoroetano, CF₂ Cl-CF₂Cl.
 Trifluormonobromometano, CF₃Br (*).
 (*) Otros derivados del metano y etano fluorados y clorados.

Trifluormonoclorometano, CF₃Cl.

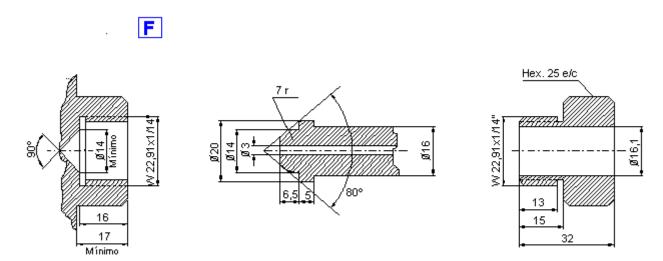
- **H)** Helio, He. Hexafluoruro de azufre, F₆S.
- **M)** Monofluortriclorometano, CF Cl₃. Monofluordiclorometano, CHF Cl₂.
- O) Perflúor propano, C₃F₈.
- X) Xenón, Xe.

ACOPLAMIENTO M.21,7 x 1,814 METRICO (IZQUIERDAS)
W 21,7 x 14 Hilos/Pulgada (IZQUIERDAS)

TIPO INFLAMABLES

Gases:

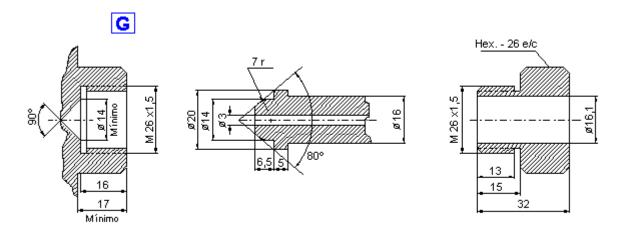
A) Arsina AsH₃


- C) Cianogeno C2N2 Cianuro de Hidrógeno CNH 1 Cloro 1,1 Difluoretano CH_3 - $CCLF_2$ Cloro fluor etileno $CCIF = CF_2$ Cloruro de Metilo CH_3CL Cloruro de Etilo C_2H_5CL Cloruro de Vinilo C_2H_3CL Ciclopropano C_3H_6
- **E)** Etano C₂H₆ Etileno C₂H₄
- **G)** Germano GeH₄ Gas Ciudad Gas Natural
- I) Isobutano iC₄H₁₀ (Metilpropano 2) Isobuteno iC₄H₈ (Metilbuteno 2)
- O) Oxido de Carbono CO Oxido de Etileno C₂H₄0 Oxido de Metileno (CH₃)₂0

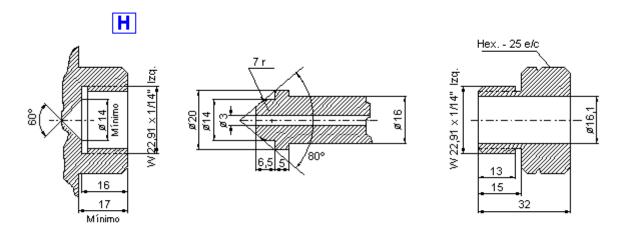
- **B)** Bromuro de Etilo C₂H₃Br Butadieno 1,3 C₄H₆ Butano C₄H₁₀ Buteno 1 C₄H₈ Buteno 2 C₄H₈ Butino C₄H₆
- **D)** Deuterio D₂ Diborano B₂H₆ Dimetilamina (CH₃)₂NH Dimetil Propano C₅H₁₂ Dimetileter (CH₃)20 1,1 Difluoretano CH₃-CHF₂ 1,1 Difluoretileno CH₂ = CF₂
- **F)** Fluoruro de Metilo CH₃F Fluoruro de Vinilo FC₂H₃ Fosfina PH₃
- **H)** Heptano C₇H₁₆ Hidrógeno H₂
- M) Metano CH₄
 Metiletileter C₂H₅0CH₃
 Metanotiol CH₄S
 Monoetilamina C₂H₅NH₂
 Monometilamina CH₃NH₂
 N)Neopentano C₅H₁₂
 P) Pentano C₅H₁₂
 Propano C₃H₈
 Propadieno (Aleno) C₃H₄

S) Seleniuro de Hidrógeno SeH₂
 Silano SiH₄
 Sulfuro de Carbonilo SCO
 Sulfuro de Hidrógeno SH₂
 V) Vinilmetileter CH₃0CH = CH₂

Propeno C₃H₆ Propino C₃H₄ (Metilaceno)


T) Trimetilamina (CH₃)₃N Tetrafluor Etileno CF₂-CF₂

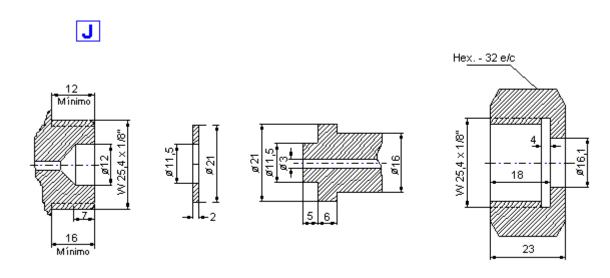
ACOPLAMIENTO W 22,91 - 14 Hilos/Pulgada (DERECHAS) TIPO OXIGENO


Gases:

Oxígeno O₂

ACOPLAMIENTO M 26 x 1,5 METRICO (DERECHAS) TIPO COMBURENTES

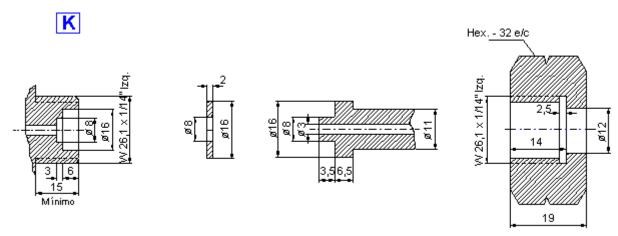
Mezclas de gases comburentes



ACOPLAMIENTO W 22,91 - 14 Hilos/Pulgada (IZQUIERDAS) TIPO ACETILENO

Gases:

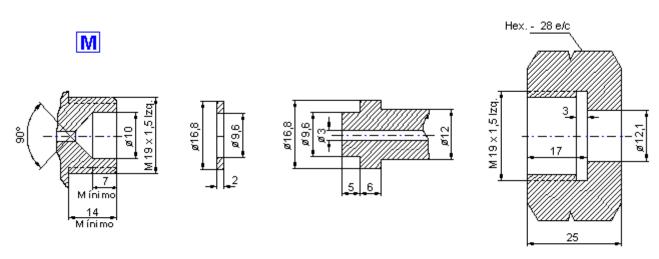
Acetileno C₂H₂


Nota: Acoplamiento alternativo W 26.44-14 Hilos/Puleada (R 314")

ACOPLAMIENTO W 25,4 - 8 Hilos /Pulgada (DERECHA)
TIPO CORROSIVO Y TOXICO

- **B)** Bromuro de hidrógeno, BrH. Bromuro de metilo CH₃Br
- **D)** Diclorosilano, Si H₂Cl₂. Dióxido de nitrógeno, NO₂.
- **H)** Hexafluoruro de tungsteno, F₆W.
- M) Monóxido de nitrógeno, NO.
- S) Sesquióxido de nitrógeno, N₂O₃.

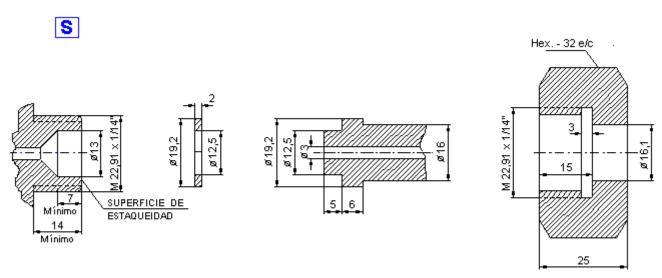
- **C)** Cloro CL₂ (en botellas) Cloruro de hidrógeno, CLH. Cloruro de boro, Cl₃B. Cloruro de carbonilo, COCl₂.
- **F)** Fuoruro de carbonilo, F₂CO. Fluoruro de hidrógeno, FH.
- I) loduro de hidrógeno, IH.
- P) Pentafluoruro de fósforo, F₅P.
- **T)** Tetracloruro de silicio, Cl₄Si. Tetrafluoruro de silicio, F₄Si. Trifluoruro de cloro, CLF₃



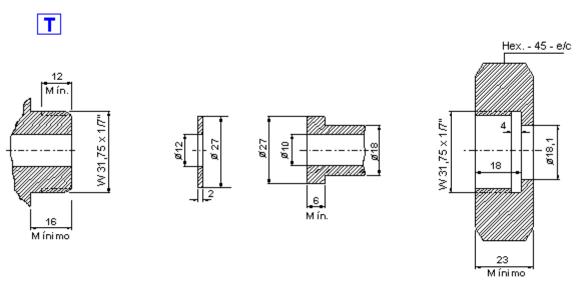
ACOPLAMIENTO W 26,1 - 14 Hilos/Pulgada (IZQUIERDAS) TIPO ALTAMENTE CORROSIVOS

Gases:

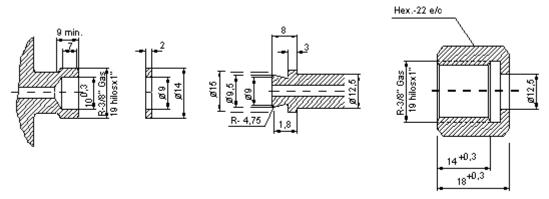
Fluor


Trifluoruro de Cloro

ACOPLAMIENTO M 19 x 1,5 METRICO (IZQUIERDAS) TIPO MEZCLAS CALIBRACIÓN

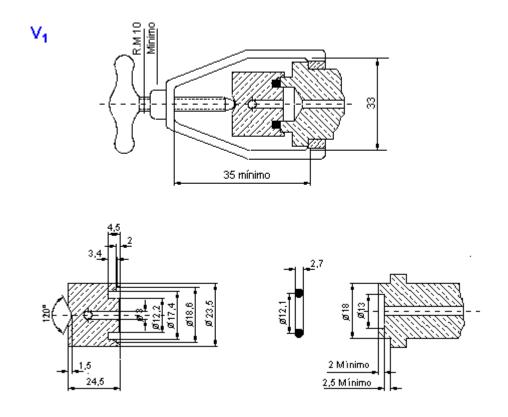

Gases:

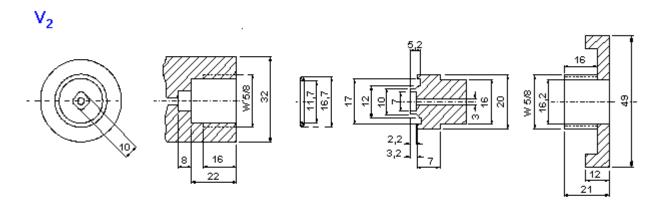
Todas las mezclas, excepto las que comporten el Oxígeno superior a 21%



ACOPLAMIENTO W 22,91 - 14 Hilos/Pulgada (DERECHAS) TIPO SULFUROSO

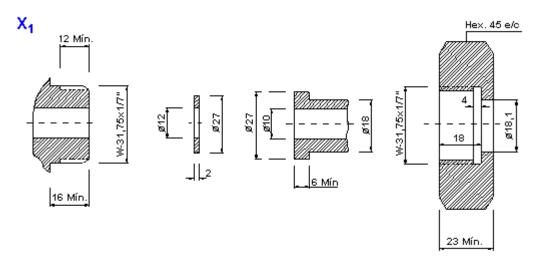
Anhídrido Sulfuroso SO₂


ACOPLAMIENTO W 31,75 - 7 Hilos/Pulgada (DERECHAS) TIPO CLORO (BOTELLONES)



ACOPLAMIENTO W 16,66-19 Hilos/Pulgada (DERECHAS) 3/8 TIPO PROTOXIDO DE NITROGENO

Gases:


P) Protóxido de nitrógeno N₂O.

ACOPLAMIENTO DE ESTRIBO DE 0,18 MILIMETROS

Racor hembra Ø 22,91, 14 hilos en pulgada Whitworth, a derechas (R 5/8"). Se emplearán los acoplamientos V_1 y V_2 en aparatos de respiración en inmersión y protección industrial.

ACOPLAMIENTO W 31,75 - 7 Hilos / Pulgada (DERECHAS)

ACOPLAMIENTO W 33,25 - 11 Hilos/Pulgada (DERECHAS)

Se emplearán los acoplamientos X_1 y X_2 en botellones que contengan compuestos cloroflúor (bromo) carbonados inertes.